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Abstract—In addition to motor dysfunction, 

Parkinson’s disease (PD) often results in symptoms of 

cognitive impairment and depression, which can go 

underdiagnosed and undertreated. One approach that 

may improve diagnosis and differentiation of motor, 

cognitive, and depressive symptoms of PD relies on vocal 

acoustics that has previously been used to predict 

symptoms in each of these domains separately. In this 

paper, a joint multi-domain characterization of the PD 

symptoms is presented. Speech recordings from 35 PD 

patients were analyzed for speech markers characterizing 

articulatory coordination based on resonant (formant) 

frequencies and delta-mel cepstral coefficients (dMFCC), 

as well as phonemic timing based on phoneme-dependent 

speaking rates. Moderate correlations were found 

between vocal markers and the motor and cognitive 

symptoms of PD, and weaker correlations with depressive 

symptoms. We identified notable differences in the 

correlation patterns, suggesting it may be possible to 

distinguish the impact of different PD symptoms on 

speech. Statistical models based on the vocal markers 

achieved moderate accuracy in predicting motor severity 

(r=0.42) and global cognition (r=0.52) but not depression 

(r=-0.21). Future study is warranted to further develop 

symptom-specific vocal marker models in PD.  

1. Introduction

Parkinson’s disease (PD) is the second most common 

neurodegenerative disease and affects one million 

Americans. Although PD is most often characterized by its 

motor symptoms, non-motor symptoms are prevalent and 

highly impactful. Common non-motor symptoms include 
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depression, which occurs in 35% of patients with PD [1] and 

cognitive impairment, which occurs in 80% of patients 

withPD over their disease course [2]. Depression and 

cognitive impairment are associated with more severe 

disease course, impaired quality of life, and increased 

mortality [3-5] and may interact with the motor features of 

PD. Depression causes psychomotor slowing and flat affect 

that mimics the characteristic bradykinesia and facial 

masking that occurs in PD. Patients with PD often have a 

monotonous voice with diminished prosody, which shares 

features with voice changes in depression [6, 7]. Likewise, 

cognitive changes in PD often involve executive dysfunction, 

which can impact verbal fluency [9], as well as gait and 

balance [10]. As a result, current clinical assessment tools 

are unable to clearly distinguish the impact of these non-

motor symptoms and motor symptoms on global function 

and thus are  underdiagnosed and undertreated in PD [8]. 

Clinicians need objective and precise tools to assess 

neuropsychiatric non-motor symptoms in PD. Vocal markers 

could be a powerful tool to meet these challenges and help to 

disentangle the underlying neurophysiology of mood, 

cognitive, and motor impairment in PD.   

Although there has been growing interest in using 

automated voice analysis to detect and monitor PD disease 

status [11-18], this body of work has focused largely on 

motor impairments that are the most commonly recognized 

changes in speech in PD. These include imprecise 

articulation, monotonous and reduced pitch and volume, 

variable speech rate and pause segments, breathy and harsh 

voice quality, and changes in intonation and rhythm [11]. 

Almost all patients with PD experience motor vocal changes 

over their disease course. Vocal markers based on these 

changes can distinguish PD from healthy controls [12-14] 

and predict PD disease severity [14-18]. However, this work, 

in focusing on motor symptoms, has not accounted for 

affective and cognitive influences on speech. To develop 

useful vocal markers in PD, the motor, cognitive and 

affective components of speech need to be better 

distinguished and understood.  

Motor and neuropsychiatric deficits in PD are thought to 

reflect different underlying neurochemical and 



neuropathological etiologies. Motor symptoms are due to 

degeneration of dopaminergic neurons in the substantia nigra, 

with resulting dopaminergic deficit in the basal ganglia.  

Depression in PD is a more heterogeneous process, involving 

dopamine [19], serotonin [20], and norepineprhine [21] 

depletion, and structural changes in limbic regions [22, 23]. 

Cognitive impairment is related in part to a dopamine deficit, 

which causes dysfunction of the cognitive pathways 

connecting the frontal lobes and basal ganglia. This impacts 

executive function, notably including lexical retrieval and 

processing speed [24, 25]. However, many other factors play 

a role in cognition in PD including other neurotransmitter 

levels, and both PD-related Lewy pathology and amyloid 

protein deposition in the cortex [26]. Additionally, functional 

neuroimaging has revealed distinct patterns of resting state 

metabolism associated with cognitive and depressive 

symptoms in PD [27-29]. We therefore sought to identify 

vocal markers of depression and cognition in PD reflective 

of these differences in pathophysiology.  

We have previously identified vocal markers of 

depression in the general population [30-32], utilizing 

changes in phonation, articulation and prosody known to 

occur across different time scales and speech segments to 

reflect the underlying neurophysiology of speech production. 

In this previous work, we used the correlation structure of  

formant frequencies and delta-mel frequency cepstral 

coefficients (dMFCCs) to represent underlying changes in 

vocal tract shape and dynamics, as well as phoneme-

dependent speaking rates, to predict symptom severity in 

major depressive disorder. Using a similar approach, we have 

also previously identified vocal markers associated with 

cognitive impairment, verbal fluency, and cognitive load in 

the general population [33-35]. In PD, linguistic changes 

associated with cognitive impairment include decreased 

speech rate, increased pausing between utterances, and 

impaired grammar, but vocal acoustics related to these 

symptoms have not been explored with a data-driven 

approach [36, 37].  

In the current work, we apply our timing- and 

coordination-based vocal acoustic feature sets and data-

driven analytical approach in patients with PD to predict 

motor, cognitive, and depressive symptoms in PD. We 

hypothesize that these PD symptoms will correlate with 

specific, identifiable changes in vocal tract shape and 

dynamics and are dependent on articulatory and phonetic 

categories. Additionally, we aim to explore the differential 

impact of motor impairment, cognitive impairment, and 

depression on PD speech. We hypothesize that while some 

features would overlap across these domains, others will be 

distinctly correlated with each domain. Our long-term goal is 

to establish symptom-specific feature clusters that will fuel 

the growing field of vocal biomarkers in PD. 

2.  Methods 

2.1.  Audio Recordings 

We studied 35 PD patients, who were enrolled at the 

Perelman School of Medicine at the University of 

Pennsylvania. PD was diagnosed according to published 

criteria [38]. All subjects completed an informed consent 

procedure in accordance with the Declaration of Helsinki and 

approved by the Institutional Review Board of the University 

of Pennsylvania. 

Motor deficits were characterized by the Unified 

Parkinson’s disease Rating Scale (UPDRS) obtained within 6 

months of speech testing. Global cognition was assessed 

with the Montreal Cognitive Assessment (MoCA). Patients 

with dementia were excluded based on MoCA score <24 [39]. 

Depressive symptoms were assessed with the Geriatric 

Depression scale (GDS) [40]. Table I summarizes  basic 

assessment statistics from the 35 patients, and Table II 

indicates between-outcome Spearman correlations. 

TABLE I. Statistics on assessments used to measure PD 

symptoms in motor (UPDRS), cognitive (MoCA), and 

depression  (GDS) domains. 

Assessment Min Max Mean Std. Dev. 

UPDRS 3 53 20.46 10.45 

MoCA 24 30 27.31 2.03 

GDS 0 13 2.46 2.94 

TABLE II. Spearman correlations between assessment 

outcome measures. 

Assessments r p 

UPDRS & MoCA -0.38 0.02 

UPDRS & GDS 0.27 0.12 

MoCA & GDS 0.01 0.94 

2.2.  Feature Extraction 

We utilize three feature sets, described below, which 

have been shown in our previous research to be predictive of 

PD motor severity [17], major depressive disorder [30-32], 

and cognitive performance [33, 34]. These feature sets 

characterize articulatory coordination based on the dynamics 

of vocal resonant frequencies and spectral properties, as well 

as changes in vocal timing at the phoneme level. 

Articulatory Coordination 

Formant frequency tracks. Properties of vocal tract 

resonances over time contain information about speech 

dynamics related to articulatory properties of the depressed 

voice. A formant tracking algorithm based on Kalman 



filtering was used to obtain smooth estimates of the first 

three resonant frequencies over time [42]. Formant 

frequencies were extracted every 10 ms from the audio 

signal. Embedded in the formant tracking algorithm is a 

voice-activity detector that allows a Kalman smoother to 

smoothly coast through non-speech regions. Estimates of the 

third formant that went above a threshold of 4.5k Hz were 

truncated. 

Articulatory coordination was estimated from formant tracks 

using correlation structure features. In this feature approach, 

a channel-delay correlation matrix is computed from the 

formant tracks using time-delay embedding. The correlation 

matrix has dimensionality (45 x 45), based on three formant 

channels and 15 time delays per channel. A single delay 

scale with 7-frames (70 ms) delay spacing is used. From the 

correlation matrix a 45-dimensional rank ordered 

eigenspectrum is computed, which characterizes the within-

channel and cross-channel distributional properties of the 

multivariate formant time series.  

 

Delta Mel Frequency Cepstral Coefficients. To introduce 

vocal tract spectral magnitude information, a standard set of 

16 Mel Frequency Cepstral Coefficients (MFCCs) was 

generated by Opensmile from segmented but otherwise 

unprocessed audio files [43]. Delta MFCCs (dMFCCs) were 

then computed, which reflect dynamic velocities of the 

MFCCs over time. Delta coefficients were computed using 

regression over a 5-frame window. A channel-delay 

correlation matrix was computed from the dMFCCs using 

time-delay embedding, with dimensionality (240 x 240), 

based on 16 dMFCC channels and 15 delays per channel 

with 1-frame (10 ms) delay spacing. From this matrix the 

240-dimensional rank-ordered eigenspectrum was computed, 

which characterizes the within-channel and cross-channel 

distributional properties of the multivariate dMFCC time 

series.  

 

Phonetic Timing: We have found that computing phoneme 

specific characteristics, rather than average measures of 

speaking rate, reveals stronger relationships between speech 

rate and depression severity [31, 45]. Using an automatic 

phoneme recognition algorithm [44], we detect phonetic 

boundaries and phoneme specific durations that are 

associated with each instance of the 40 classes of defined 

phonetic speech units. Consistent with previous work on free 

speech recordings that have variable total durations, the 

summed durations of each phoneme are normalized by the 

total number of phonemes to produce a phoneme rate 

measure.  

 

Based on previous work [31, 45], for the phonemes that have 

rates that are highly correlated with an outcome measure 

(UPDRS, MoCA, or GDS) on the training set, the rates are 

linearly combined to yield a fused phoneme rate measure, 

with the sign of the combination weight based on the 

correlation sign. Consistent with [45], we use binary weights 

of 1 or -1 to combine the rates of the selected phonemes. In 

the current work, we select the top eight correlating 

phonemes, since eight is the average of the number of 

phonemes (six and ten) use on two different recorded 

passages in [31]. 

 

2.3.  Correlational Analysis 

The vocal markers consist of high dimensional feature 

vectors: 45-dimensional formant eigenspectra, 240-

dimensional dMFCC eigenspectra, and 40-dimensional 

phoneme rate measures. As a first level of analysis, the 

correlations of the raw feature elements with the three PD 

symptom outcomes are measured. Specifically, correlations 

are measured with motor symptoms (UPDRS scores), 

cognitive impairment symptoms (MoCA scores), and 

depression symptoms (GDS scores). Because MoCA scores 

are negative indicators of impairment, correlatons are done 

with negative MoCA scores, for sign consistency with the 

UPDRS and GDS correlations.  

2.4.  Outcome Prediction 

Regression Model. A standard statistical approach called 

Gaussian staircase (GS) regression [17, 30, 31] is used for 

prediction. GS generalizes the use of a Gaussian classifier 

for regression into an ensemble of Gaussians for each class 

(Class 1 = “lower”, Class 2 = “higher”), based on 

partitioning of the range of values of the outcome variable. 

The ensemble of Gaussians associated with each class is 

interpreted as a Gaussian mixture model, such that the Class 

1 or Class 2 likelihood for a test data point is the sum of 

likelihoods from the Gaussian ensemble associated with that 

Class. The outcome prediction is then obtained using  

univariate regression based on the two-class log-likelihood 

scores, with the regression model constructed from the 

training set log-likelihood scores. 

 

For this work, GS levels were determined for each outcome 

variable as follows. The UPDRS Class 1 partitions were [0-

11, 0-16, 0-21, 0-26], the MoCA Class 1 partitions were [0-

25, 0-26, 0-27, 0-28, 0-29], and the GDS Class 1 partitions 

were [0-0, 0-1, 0-2, 0-3, 0-4]. For each symptom domain, the 

Class 2 partitions are simply the complement of the Class 1 

partitions. Regularization was done by adding covariance 

values of 10 to the diagonal elements of the Gaussian 

covariance matrices. 2nd-order univariate regression was 

used to map log-likelihoods to outcome predictions. 

 

Dimensionality Reduction. In order to avoid possible 

feature selection biases on a relatively small (35-subject) 

dataset, we adopted the same feature selection parameters 

that were used in the depression prediction system that  won 

first place in the AVEC 2014 depression prediction sub-

challenge [31]. Specifically, the first four principal 

component features were used for the formant correlation 



structure features, and the first five principal components for 

the delta-MFCC correlation structure features.  

 

In the AVEC 2014 system, phoneme rate features were used 

on two different passages, a read passage and a free speech 

passage. The top six correlating phonemes were combined in 

the read passage, and the top ten phonemes in the free 

speech passage. Here, we split the difference, using the top 

eight correlating phonemes.  

 

Cross-validation. In order to obtain an unbiased estimate of 

generalization performance, a cross-validation procedure is 

used such that statistical models are trained on rotating data 

subsets, and applied to held-out test data, with no overlap in 

subject identity between training and test sets. Within this 

procedure, all transformations that depend on features 

obtained across multiple recordings, such as z-scoring, PCA, 

and correlation-based phoneme rate aggregation, are 

computed strictly within the training set and then applied to 

the held-out test set. 

One shortcoming of small data sets is that randomly 

partitioned cross-validation folds, or leave-one-subject cross-

validation, can result in negatively biased estimates, since the 

training set outcome variables tend to be negatively 

correlated with the test set outcome variable. To avoid this 

complication, a 12-fold stratified sampling cross-validation 

procedure is used, in which the expected value of the 

outcome variable is kept as consistent as possible across the 

different test folds. 

3.  Results 

3.1.  Correlational Analysis 

Figure 1 shows the Spearman correlations between the 

formant eigenvalue features (top) and the dMFCC 

eigenvalue features (bottom) with the three outcomes. The 

eigenvalues are rank ordered left to right from largest to 

smallest.  Overall, smaller formant eigenvalues are 

negatively correlated with symptom severity, and smaller 

dMFCC eigenvalues are positively correlated with symptom 

severity. This correlation pattern is stronger for motor and 

cognitive symptoms, and weaker for depressive symptoms. 

This pattern of results is consistent with previous work 

showing similar patterns in formant- and dMFCC-based 

eigenvalue features for motor symptoms in Parkinson’s 

disease [17] and for  symptoms of major depressive disorder 

[30, 31]. Similar results have also been found in formant-

based eigenavalue features for symptoms of reduced 

cognitive performance related to aging [34] and possible 

mTBI [33].  

Despite the overall similarities in correlation patterns 

among the various PD symptom domains, there are some 

notable differences. First, the depression symptoms show 

smaller absolute correlation levels. This may be due to the 

low and restricted range of GDS scores (see Table 1), 

indicating minimal depressive symptoms are present in this 

cohort. Second, there are notable shifts in the UPDRS versus 

MoCA correlation patterns. For the formant-based 

eigenvalues, there are stronger negative correlations with 

UPDRS among eigenvalues 5 through 20. For the dMFCC-

based eigenvalues, on the other hand, there are stronger 

correlations with MoCA among eigenvalues 20 through 40, 

and stronger correlations with UPDRS among eigenvalues 

54-140 and 220-240. These differences indicate that there 

may be subtle differences in the effects of motor and 

cognitive symptoms on articulatory speech dynamics. 

Figure 2 shows the Spearman correlations between 

MoCA outcomes. For clarity, correlations with GDS are not 

included, as these correlations were considerably smaller. 

The phonemes are divided into three categories: 1) phonemes 

with similar outcome correlations (left); 2) strong UPDRS 

and weak MoCA correlations (center); 3) weak UPDRS and 

strong MoCA correlations (right). In the first category are 

phonemes indicating that motor and cognitive symptoms are 

positively associated with: slower speech planning and 

execution (‘sil’, ‘ah’), slower labial, labial/dental, and/or 

tongue/dental movements (‘uw’, ‘th’, ‘b’, ‘v’), and faster 

 

 

Figure 1. Spearman correlations of formant-based (top) and 

dMFCC-based (bottom) eigenvalue features with three PD 

symptom outcomes. Eigenvalues are ordered, largest to 

smallest, from left to right, and MoCA is sign-adjusted. 



 

Figure 2. Spearman correlations of phoneme rates with 

motor and cognitive impairment symptoms shown for those 

phonemes that have |r|>0.28 for either outcome.  

execution of the dipthong vowel ‘oy’. In the second category 

are two open-vowel phonemes (‘ae’, ‘ey’) that require large 

jaw movements, for which faster rates are positively 

associated with motor symptoms only. For the phonemes 

‘oy’, ‘ae’, and ‘ey’, the positive association between faster 

rates and symptom severity could be due to shorter or less 

complete motor trajectories. Finally, in the third category are 

three consonants (‘ng’, ‘jh’, ‘z’), which require precise 

tongue articulation, for which slower rates are positively 

associations with cognitive symptoms only. 

3.2.  Outcome Prediction 

Table III shows the correlations obtained in predicting the 

three outcome variables based on each individual feature set 

using 12-fold stratified sampling. It also shows the results 

obtained by combining the three feature sets, which was 

done by adding the GS log-likelihood ratios across the three 

feature sets, prior to the univariate regression step. The 

dMFCC feature set obtained the strongest correlations for 

both motor and cognitive symptoms. For cognitive 

symptoms, predictions combining the three feature sets 

improved prediction performance. None of the feature sets 

were useful for predicting depression symptoms. Figure 3 

illustrates the predicted motor assessments (top) and 

cognitive assessments (bottom) as a function of true 

assessment values for the combined system. 

TABLE III. Spearman correlations between predicted and 

true symptom assessment scores, based on vocal markers. 

Feature 

Sets 

UPDRS MoCA GDS 

r         (p) r         (p) r         (p) 

Formants 0.20  (0.24) 0.16  (0.35) -0.04 (0.84) 

dMFCC 0.43  (0.01) 0.39  (0.02) 0.02  (0.92) 

Phonemes 0.13  (0.46) 0.29  (0.09) -0.45 (0.01) 

Combined 0.42  (0.01) 0.52  (0.00) -0.21 (0.23) 

 

Figure 3. Fused system predictions are plotted as a function 

of true values for UPDRS (top; r=0.42) and MoCA (bottom; 

r=0.52). 

4.  Discussion 

Using high-level acoustic features, we identified vocal 

markers of neuropsychiatric symptoms in PD. Our approach 

adds to the field of vocal biomarker assessment in several 

ways. First, we have identified vocal markers associated with 

depression and cognition in PD for the first time to our 

knowledge. Second, we established that different 

characteristic values of formant and dMFCC correlation 

structure, and of phonemic durations and categories, are 

correlated with motor and non-motor symptoms. Our results 

were more robust for cognition compared with depression. 

Future work is needed to explore the elements of the speech 

task demands and the optimal features to better assess 

depression.  

Strengths of our approach include the relative 

independence from patient characteristics such as sex and 

age, due to the normalization inherent in the correlation 

feature structure approach. This approach may also more 

reliably control for variations within individuals with PD. 

Variability in symptoms is a challenge for PD biomarker 

development, since PD symptoms may vary based on 

environment, concurrent motor and/or cognitive load, and 

medication effects. Another strength is the ecological validity 



of our approach. We were able to demonstrate success using 

an iPhone in typical clinic room or home setting, rather than 

a lab setting. This suggests that vocal biomarker monitoring 

may be feasible without expensive or intrusive equipment, 

allowing it to characterize the patient’s unique daily 

experience. Weaknesses of our study include the limited 

range of depressive symptom severity in this patient 

population. Future work should include PD patients with 

more severe depressive symptoms. In addition, our sample 

size was relatively small and included only patients recruited 

at an academic medical center, and may not be generalizable 

to other PD patient populations. 

5.  Conclusion 

Vocal markers are a promising tool to assess both motor 

and non-motor, including depressive and cognitive, 

symptoms in patients with PD. This work supports the 

feasibility of symptom-specific feature clusters that enhance 

the further development of vocal biomarkers in PD and 

suggests correlation dependence on articulatory and phonetic 

categories. The major advantages of vocal markers are that 

speech can be tested remotely and automatically, allowing 

for frequent and quantitative symptom assessment. This 

approach could fuel large-scale screening of patients and 

improved monitoring of fluctuating symptoms during daily 

activities, as well as monitoring of response to therapeutics. 

Further research is warranted using multi-modality feature 

analysis with additional motor and affective components in 

order to better detect neuropsychiatric symptoms in PD. 
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